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A simple model for flowing sand on an inclined plane is introduced. The model
is related to recent experiments by Douady and Daerr and reproduces some of
the experimentally observed features. Avalanches of intermediate size appear to
be compact, placing the critical behavior of the model into the universality class
of compact directed percolation. On very large scales, however, the avalanches
break up into several branches, leading to a crossover from compact to ordinary
directed percolation. Thus, systems of flowing granular matter on an inclined
plane could serve as a first physical realization of directed percolation.

KEY WORDS: Directed percolation; nonequilibrium phase transitions;
sandpiles.

I. INTRODUCTION

Directed Percolation (DP) is probably the simplest model that exhibits a
non-equilibrium phase transition between an active ``wet'' phase and an
inactive ``dry'' one.(1) In the dry phase the system is in a single ``absorbing''
state from where it cannot escape. Interest in DP mainly stems from univer-
sality of the associated critical behavior. It is believed that transitions in
all models with an absorbing state belong to the DP universality class
(unless there are some special underlying symmetries). DP exponents were
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measured for an extremely wide variety of models. Even though the
exponents have not yet been calculated analytically, their values (especially
in 1+1 dimensions) are known with very high precision.(2)

Despite the preponderance of models in the DP universality class, so
far no physical system has been found to exhibit DP behavior. Indeed, as
noted by Grassberger,

``...there is still no experiment where the critical behavior of DP was seen. This is a
very strange situation in view of the vast and successive theoretical efforts made to
understand it. Designing and performing such an experiment has thus top priority in
my list of open problems.'' (3)

The purpose of this paper is to point out that a simple system of flowing
sand on an inclined plane, that has recently been introduced and studied
by Daerr and Douady (DD), may well be the first physical realization of
a transition in the DP universality class.(4�6) In Section II we describe these
experiments in fair detail. The data presented by DD raises serious ques-
tions regarding the applicability of DP. In particular, the observed shapes
of wet clusters differ from those seen in standard DP simulations; they are
much more compact. Since the corresponding model, called Compact
Directed Percolation (CDP), is unstable against perturbations towards the
standard DP behavior, (7) the latter is the generic case expected to occur (if
no parameters were fine-tuned to place the system in the CDP class).

This motivated us to look for a simple model which is defined in terms
of dynamic rules that can plausibly be related to the experiments and, at
the same time, exhibit features that look like the experimentally observed
ones. Whether the transition exhibited by such a model does belong to the
DP universality class remains to be investigated.

Such a model is introduced in Section III. It is a directed sandpile
model, which is simpler than the one introduced and analyzed by Tadic
and Dhar;(8) here the system is reset to a uniform initial state after each
avalanche. In Section IV we show the outcome of some simulations. The
avalanches (observed in the active phase) reproduce the experimental
observations quite well. We establish the existence of a transition from an
active to an inactive phase. However, the critical behavior extracted from
these figures does not seem to be in the DP universality class, rather, it
seems close to CDP. As it turns out, this CDP type critical behavior is only
a transient: the true critical behavior is of the DP type, but can only be
seen after a very long crossover regime, in which the exponents are those
of CDP. This observation is based on a careful numerical study, which is
presented in Sections V and VI.

Our conclusion is that the DD experiment does serve as a possible
realization of a DP-type transition. Observation of DP exponents may be
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tricky as a substantial crossover regime may mask the true critical
behavior, and one should try to find methods to shorten this regime.

Finally we should note that the preparation procedure of the DD
system can be considered a simple case of Self Organized Criticality
(SOC).(9) As in the SOC sandpile model introduced by Tadic and Dhar, (8)

the system ``prepares itself '' at the critical point of a DP type transition
without any fine tuning. However, in the present case the driving
mechanism is slightly different. While in SOC models a slow driving force
causes the evolution into a critical state, avalanches in the DD experiment
are started individually by hand.

II. THE DOUADY-DAERR EXPERIMENT

The experimental apparatus consists of an inclined plane (size of
about 1m) covered by a rough velvet cloth; the angle of inclination .0 can
be varied. Glass beads (e.g., ``sand'') of diameter 250�425 +m(4) are poured
uniformly at the top of the plane and flow down while a thin layer of thick-
ness h=hd (.0), consisting of several monolayers, settles and remains
immobile. At this thickness the sand is dynamically stable; the value of hd

decreases with an increasing angle of inclination.
For each .0 there exists another thickness hs with hs(.0)>hd (.0),

beyond which a static layer becomes unstable. Hence there exists a region
(see Fig. 1) in the (., h) plane, in which a static layer is stable but a flow-
ing one is unstable. We can now take the system, that settled at hd (.0),
and increase its angle of inclination to ., staying within this region of
mixed stability. The layer will not flow spontaneously, but if we disturb it
at the top, generating a flow near the perturbation, the flow will persist and
an avalanche will be generated, leaving behind a layer of thickness hd (.).
These avalanches had the shape of a fairly regular triangle with opening
angle %. As the increment of the inclination

2.=.&.0

decreases, the value of %(2.) decreases as well and the area affected by the
avalanche decreases, vanishing as 2. � 0. This calls for testing a power
law behavior of the form

%t(2.)x (1)

If instead of increasing . we lower the plane, i.e., go to 2.<0, our system,
whose thickness is hd (.0), is below the present thickness of dynamic
stability, hd (.). We believe that in this case an initial perturbation will not
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Fig. 1. Schematic stability diagram of the DD-experiment. A layer of thickness h is dynami-
cally stable below a certain threshold hd (.) (solid line). Due to friction forces non-moving
layers remain stable in the mixed region below static stability limit hs(.) (dashed line). In the
present work we investigate the properties in the vicinity of the dynamic phase transition line,
as indicated by the arrows.

propagate, it will rather die out after a certain time (or beyond a certain
size ! | | of the transient avalanche). As the deviation |2.| decreases, we
expect the size of the transient active region to increase, i.e., the decay
length should grow according to a power law

! | | t(&2.)&&| | (2)

Hence, by pouring sand at inclination .0 , DD produced a self-organized
critical system. The system is precisely at the borderline (with respect to
changing the angle) between a stable regime .<.0 in which perturbations
die out and an unstable one, .>.0 , where perturbations persist and
spread. This kind of self-organized criticality during the preparation proce-
dure differs from standard SOC models(9) in which a slow driving force
(acting on a time scale much smaller than that of the system's dynamic
response) causes evolution to a critical state.

Once this connection has been made, it is natural to associate this
system with the problem of DP. Denote by p either the site or bond percola-
tion probability and by pc its critical value (i.e., for p>pc the system is in the
active phase). We associate the change in tilt with p& pc , assuming
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Fig. 2. The top layer of sand in an effective washboard potential.

that near the angle of preparation the behavior of the sand system is
related to a DP problem with

2.=.&.0 B p& pc (3)

Hence, the exponent & | | should be compared with the known values for DP
and CDP. The exponent x in Eq. (1) can also be measured and compared with

tan %t!= �! | | t(2.)&| |&&= (4)

III. THE MODEL

Our aim is to write down a simple model based on the physics of flow-
ing sand. We adopt the observation made by DD, that in the regime of
interest (i.e., for tilt angles close to .0) grains of the top layer of sand rest
on grains of the layer below (rather than on other grains of the top layer).4

Hence the lower layers provide for the top one a kind of washboard poten-
tial, as depicted in Fig. 2.

We further assume that only the top layer participates in an avalanche
and therefore place the grains of this layer on the sites of a regular square
lattice5 (see Fig. 3). At any given time a particular horizontal row of grains
may become active, while at the next time step the activity may be trans-
ferred to the row beneath. The physical picture that underlies the model is
as follows. A grain G may become active if at least one of the neighboring
grains in the row above it has been active at the previous time step. These
grains may then transfer energy to G; if 2E(G), the total energy transferred
to G, exceeds the barrier Eb of the washboard, G becomes active. An active
grain ``rolls down'' at the next time step and collides with the grains of the
next row. The energy it brings to these collisions is 1+2E(G), where 1 is
the potential energy due to the height difference between two consecutive
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4 This holds for .<.0 and also for .>.0 , as long as we stay within the region of mixed
stability.

5 We chose to work with a square lattice, but could have used a triangular one as well, with
each site communicating with two neighbors above and two below.
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Fig. 3. Energy transfer between grains on a square lattice.

rows. A fraction f of its total energy is dissipated, while the rest is divided
stochastically among its three neighbors from the lower row.

The model is hence defined in terms of two variables; an activation
variable,

S t
i ={1

0
if grain (t, i ) active,
otherwise,

and an energy variable E t
i . The index t denotes rows of our square lattice

and time; at time t we update the states of the grains belonging to row t.
Energy is measured in units of the difference between two successive
minima of the potential (see Fig. 2). The model is controlled by two
parameters, namely

Eb , the barrier height, and

f, the fraction of dissipated energy.

The dynamic rules of our model are defined in terms of these variables and
parameters as follows. For given values of activities S t

i and energies E t
i we

first calculate the energy transferred to the grains of the next row t+1. To
this end we generate for each active site S t

i=1 three random numbers,
zt

i($) (with $=\1, 0) in a way that

:
$=\1, 0

zt
i($)=1 (5)
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The energy transferred to grain (t+1, i) is then given by

2E t+1
i =(1& f ) :

$=\1, 0

S t
i&$ E t

i&$ zt
i&$($) (6)

The values of these energies determine the activation of the grains of
row t+1:

S t+1
i ={1

0
if 2E t+1

i >Eb ,
if 2E t+1

i �Eb
(7)

The energies of the active grains are set according to

E t+1
i =S t+1

i (1+2E t+1
i ) (8)

The meaning of these rules, in words, is obvious: the energy of site i at time
t+1 is obtained by identifying, among its three neighbors of the preceding
row, those sites (or grains) that were active at time t. At each such active
site (t, i) we generated three random numbers z t

i($) which represent the
fraction of energy transferred from the grain at site (t, i) to the one at
(t+1, i+$). We add up the energy contributions from these active sites;
the fraction 1& f is not dissipated and compared to the barrier height Eb .
If the acquired energy 2E t+1

i exceeds Eb , site (t+1, i) becomes active, rolls
over the barrier bringing to the collisions (at time t+2) the acquired
energy calculated above and its excess potential energy (of value 1).

IV. SHORT-TIME SIMULATIONS AND QUALITATIVE
DISCUSSION OF THE TRANSITION

Let us consider the behavior of our model as we vary Eb at a fixed
value of the dissipation. We expect that for small values of Eb an active
grain will activate the grains below with high probability; avalanches will
propagate downhill and also spread sideways. For a strongly localized
initial activation we should, therefore, observe activated regions of tri-
angular shape. As Eb increases, the rate of activation decreases and the
opening angle % of these triangles should decrease, until Eb reaches a criti-
cal value E c

b , beyond which initial activations die out in a finite number of
time steps (or rows). These expectations are indeed borne out by simula-
tions of the model: the critical value E c

b depends on the dissipation f and
the resulting phase transition line is shown in Fig. 4 as a solid line.

In order to understand this transition qualitatively, let us consider a
simple mean-field type approximation, in which all stochastic variables are
replaced by their average values.
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Fig. 4. Phase diagram of the model for flowing sand. The full line represents the phase tran-
sition line. The mean-field approximations of Eqs. (10) and (14) are shown as dotted and
dashed lines, respectively.

We consider an edge separating an active region from an inactive one
at time t: sites to the left of i and i itself are wet, whereas i+1, i+2,... are
dry. Will the rightmost wet site be wet or dry at the next time step? Assuming
that all wet sites at time t have the same energy Et, in our mean-field type
estimate the energy delivered to site i at time t+1 is

2E t+1
i = 2

3 (1& f )(1+2E t) (9)

where we set in Eq. (6) all z($)=1�3. At the critical point we expect all
energies just to be sufficient to go over the barrier; hence set 2E t+1

i =
2Et=E c

b in Eq. (9). Solving the resulting equation yields

E c
b=

2(1& f )
1+2f

(10)

In Fig. 4 this rough estimate of the transition line is shown as a dotted line.
This simple calculation captures the physics of the problem. However,

it is easy to improve it in the following way. As before, we assume the
energy of toppling grains to be distributed equally among the three
neighbors of the subsequent row. However, we no longer assume all active
sites to carry the same energy, instead we compute the energy profile at the
edge of a cluster. To this end let us consider a semi-infinite cluster with
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S t
i =1 for i�0 and S t

i=0 for i>0. According to Eq. (6), we are looking
for a stationary solution of the equation of motion

2E t+1
i =

1& f
3 {

3+2E t
i&1+2E t

i +2E t
i+1

2+2E t
&1+2E t

0

1+2E t
0

0

if i<0
if i=0
if i=1
if i>1

(11)

where 2E t
0=E c

b . Notice that under these conditions the energy 2E t+1
i does

not suffice to active the grain at site i=1. Solving Eq. (11) we obtain the
stationary solution

2E stat
i =Ebulk&Egap exp(ai), (i�0) (12)

where

Ebulk=(1& f )� f

Egap=
2+ f &- 12f&3f 2

2f (1& f )
(13)

a=arccosh
2+ f
2&2f

Thus, the critical threshold is given by the expression

E c
b=

2f 2&5f +- 12f&3f 2

2f ( f&1)
(14)

which slightly improves the mean field result (10), especially for small
values of f (see dashed line in Fig. 4).The energy profile decreases at the
edges of the cluster and saturates in the bulk at Ebulk , as shown in Fig. 5.

Fig. 5. Schematic drawing of the energy profile of a compact cluster in the improved mean
field approximation.
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The connection of our model to the experimental conditions is based
on the assumption that the tilt angle of the experiment tunes the ratio
between the barrier height and the difference of potential energies between
two rows. If the system has been prepared at some .0 , we raise the tilt
angle to .; perturbing the system in this region of mixed stability will
generate an avalanche.

That is, for .>.0 we have Eb<Ec
b . As the tilt angle is reduced, the

size of Eb (measured in units of the potential difference) increases, until it
reaches its critical value precisely at .0 . Thus increasing Eb in the model
corresponds to lowering the tilt angle towards the value at which the system
has been prepared and, as such, is precisely the boundary of dynamic
stability.

Hence to reproduce the experiment we were looking for

1. fairly compact triangular regions of activation for Eb<E c
b ,

2. a varying opening angle of these triangles which should go to zero
as Eb approaches E c

b from below.

The number of ``time steps'' that correspond to the DD experiment can be
estimated as the number of rows of beads from top to bottom of the plate,
i.e., about 3000.

We simulated the model defined in Eqs. (6)�(8) to check whether it is
possible to reproduce the qualitative features of the experiment. Indeed we
found this to be the case, as can be seen in Fig. 6. The two avalanches were

Fig. 6. Typical avalanches starting from a single seed with dissipation f =0.5 far away and
close to criticality.
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Fig. 7. Opening angle % of activated triangular regions as a function of the distance from
criticality in a double-logarithmic representation.

produced for dissipation f =0.5, activating a single site at t=0, to which
an initial energy of E0=500 was assigned.6 The avalanches were compact,
triangular, and with fairly straight edges. The edges became rough only
when Eb was very close to its critical value, as can be seen on the right
hand side of Fig. 6. The opening angle of the active regions % decreased as
Eb increased towards E c

b , which is shown in Fig. 7. From these simulations
we obtain the estimate (see Eq. (4))

x=& | |&&==0.98(5)&1 (15)

We conclude that measuring the dependence of the avalanche opening
angle on 2. in the experiment should also give a linear law. This predic-
tion is in agreement with the data presented by DD.(4, 5)

Furthermore, the density of active sites in the interior of the triangular
regions is found to be almost constant, indicating a first-order transition.
These results suggest that the transition belongs to the CDP universality
class, which is characterized by the critical exponents(10)

& | |=2, &==1, ;=0 (16)

These observations pose, however, a puzzle: since we believe that DP is the
generic situation, we would expect to find non-compact active regions and
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DP exponents. In the following section we present a careful numerical
analysis of the critical behavior of our model which resolves this problem:
the exponents seen in our simulations (and in the experiment) should cross
over to the DP values, but only if one gets very deep into the critical
region.

V. CROSSOVER TO DIRECTED PERCOLATION

The linear law observed in Fig. 7 can be explained by assuming com-
pact clusters whose temporal evolution is determined by the fluctuations of
their boundaries. The boundaries perform an effective random walk with a
spatial bias proportional to Eb&E c

b . Therefore, the critical model should
behave in the same way as a Glauber�Ising model at zero temperature, i.e.,
the transition should belong to the CDP universality class. However,
according to the DP conjecture(11) any continuous spreading transition
from a fluctuating active phase into a single frozen state should belong to
the universality class of directed percolation (DP), provided that the model
is defined by short range interactions without exceptional properties such
as higher symmetries or quenched randomness (see Section VI). Clearly,
the present model fulfills these requirements. It has indeed a fluctuating
active state and exhibits a phase transition into a single absorbing state
which is characterized by a positive one-component order parameter.
According to these arguments, the phase transition should belong to the
DP universality class.

In order to understand this apparent paradox we perform high-preci-
sion Monte-Carlo simulations for dissipation f =0.5. We employ time-
dependent simulations, (12) i.e., we topple a single grain in the center and
analyze the properties of the resulting cluster. As usual for this type of
simulations, we measure the survival probability P(t), the number of active
sites N(t), and the mean square spreading from the origin R2(t) averaged
over the surviving runs. At criticality, these quantities are expected to show
an asymptotic power law behavior

P(t)tt&$, N(t)tt', R2(t)tt2�z (17)

where $, ', and z are critical exponents which label the universality class.
In the case of CDP these exponents are given by refs. 7 and 10

$=1�2, '=0, z=2 (18)

whereas DP is characterized by the exponents(2)

$=0.1595, '=0.3137, z=1.5807 (19)
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Fig. 8. Mean survival probability P(t) of the toppling process at criticality averaged over
50,000 independent runs. The predicted slopes for CDP and DP are indicated by dotted and
dashed lines, respectively.

In order to eliminate finite-size effects, we use a dynamically generated
lattice adjusted to the actual size of the cluster. Moreover, we observe that
the initial non-universal transient is minimal if an excitation energy E0&15
is used. Detecting deviations from power-law behavior in the long-time limit
we estimate the critical energy by E c

b=0.385997(5). Our numerical results
(obtained from simulations at the critical point) are shown in Figs. 8�10.
In all measurements we observe different temporal regimes:

Fig. 9. Average number of active sites N(t). The expected slopes are indicated in the same
way as in Fig. 8.
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Fig. 10. Mean square spreading from the origin averaged over surviving runs. In order to
demonstrate the crossover from CDP to DP we divided R2(t) by t. The expected slopes
(2&z)�z are indicated by dotted and dashed lines.

1. During the first few time steps, the activation energy is distributed
to the nearest neighbors whereby the cluster grows at maximal speed.
Therefore, the survival probability P(t) is 1 and the particle number N(t)
grows linearly.

2. In the intermediate regime, which extends up to a few hundred
time steps, the inactive islands within the cluster are not yet able to break
up the cluster into separate parts. Thus, the cluster can be considered as
being compact and the temporal evolution is governed by a random walk
of its boundaries. In this regime we observe a power-law behavior with
CDP exponents (indicated by dotted lines in Figs. 8�10).

3. The intermediate regime is followed by a long crossover from
CDP to DP extending over almost two decades up to more than 104 time
steps.7

4. Finally the system enters an asymptotic DP regime (indicated by
dashed lines in Figs. 8�10).

The crossover from CDP to DP is illustrated in Fig. 11. Two avalanches
are plotted on different scales. The left one represents a typical avalanche
within the first few thousand time steps. As can be seen, the cluster appears

1162 Hinrichsen et al.
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where inhomogeneous interactions at the cluster's boundaries were assumed.
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Fig. 11. Typical clusters generated at criticality on small and large scales, illustrating the
crossover from CDP to DP.

to be compact on a lateral scale up to 100 lattice sites. However, as shown
in the right panel of Fig. 11, after a very long time the cluster breaks up
into several branches. The right hand figure shows a typical cluster on a
scale of 150,000 time steps, where the branches still have a certain charac-
teristic thickness. Going to even larger scales the width of the branches
becomes irrelevant and we obtain the typical patterns of critical DP clusters.

In comparison with ordinary DP lattice models, in the present model
the observed crossover is unusually slow. This due to short-range correla-
tions between active sites leading to active branches with a certain typical
thickness !act . In ordinary DP lattice models the average size of active
branches is of the order of a few lattice spacings. In the present case,
however, we find a much larger value !actr20.

Based on this observation, the typical crossover time tc can be
approximated as follows. In order to cross over to DP, the average size of
inactive regions between neighboring branches !inact has to become larger
than the thickness of the branches !act . In Fig. 12 we plot both quantities
as a function of time at criticality, using a lattice with N=214 sites and
homogeneous initial conditions Et=0

i =2. Initially !act=N and !inact=0.
As time evolves, the average size of active branches decreases and saturates
at a constant value !actr20. However, the average size of inactive regions
!inact continues to grow and exceeds !act at time tcr105. As can be seen,
this provides a good estimate of the typical time where the critical behavior
of the system crosses over to DP.

In order to observe the crossover experimentally, it would be interest-
ing to know how the crossover time tc can be reduced. To this end we
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Fig. 12. Mean sizes of active and inactive regions as a function of time, starting from homo-
geneous initial conditions with dissipation f =0.5 (see text). The inset shows the saturation
value of !act as a function of the dissipation f.

measure !act for several values of the dissipation f (see inset of Fig. 11). It
turns out that by increasing f the typical size of active branches can be
decreased down to 10 lattice spacings. Consequently, the crossover time
can be reduced by more than one decade. Hence, for an experimental
verification of DP, systems with high dissipation are more appropriate.

The influence of the dissipation can easily be explained within the
improved mean field approximation of Section IV. Clearly, the stability of
a cluster against breakup into several branches by fluctuations depends on
the energy gap Egap=Ebulk&Ec . As can easily be verified, this energy dif-
ference (and therewith the stability of compact clusters) decreases with
increasing dissipation f, explaining the observed f-dependence.

VI. THE EFFECT OF RANDOMNESS

The above model describes the physics of flowing sand in a highly
idealized manner. In particular, it ignores the fact that spreading avalanches
may be subjected to frozen disorder. For example, irregularities of the plate
and the velvet cloth could lead to quenched randomness in the equations
of motion. Moreover, the system prepares itself in an initial state which is
not fully homogeneous. Thus, we have to address the question to what
extent quenched randomness will affect the expected crossover to DP.

1164 Hinrichsen et al.



Certain types of quenched disorder are known to change the critical
behavior of DP. For example, Moreira and Dickman studied the diluted
contact process with spatially quenched disorder.(14) Even for small
amplitudes quenched randomness was found to destroy the DP transition,
turning algebraic into logarithmic laws. Janssen(15) confirmed and substan-
tiated these findings by a field-theoretic analysis. Recently Cafiero et al.(16)

mapped DP with spatially quenched disorder onto a non-markovian process
with memory exhibiting the same nonuniversal properties. The memory is
due to the formation of bound states of particles in those regions where the
percolation probability is very high. As shown by Webman et al., these
bound states give rise to a glassy phase separating active and inactive parts
of the phase diagram.(17) Similar nonuniversal properties were also observed
in DP processes with temporally quenched disorder.(18)

In all cases investigated so far, quenched disorder destroys the DP
transition. However, the disorder in the DD experiment is different in
nature. Clearly, it is neither spatially nor temporally quenched, rather it
depends on both space and time. On the level of our model we may think
of randomly varying energy barriers

Eb � Eb+A'(x, t) (20)

where the amplitude A controls the intensity of disorder. Here '(x, t) is a
white Gaussian noise specified by the correlations

'(x, t) '(x$, t$)=$d (x&x$) $(t&t$) (21)

where d=1 denotes the spatial dimension. In the standard situation of
quenched noise of this type '(x, t) is kept fixed while the experiment is
repeated and the quantities under investigation are averaged over many
independent avalanches. Yet in the DD experiment, the situation is dif-
ferent. Here once the sand has been poured, a particular realization of the
random variables has been selected. However, there is no process to repeat
the experiment over and over again with a fixed '(x, t). Rather, after each
avalanche the system is prepared again (by pouring sand or by starting an
avalanche elsewhere). Hence the averaging process is done simultaneously
over the '(x, t) and the stochastic dynamic process that generates the
avalanches. This type of averaging is of the annealed type and therefore less
likely to alter the critical behavior than its quenched version.

In order to find out whether fully quenched disorder affects the
asymptotic critical behavior of DP, we simulated a directed bond percola-
tion process with randomly distributed bond probabilities between p* and 1.
For p*=0.289(1), we find asymptotic power laws with DP exponents,
indicating that the transition is not affected by spatio-temporally quenched

1165Flowing Sand: A Realization of Directed Percolation



noise.Therefore, we expect the same to be true in the case of annealed dis-
order in our model for flowing sand.

To support this point of view, we study the case of quenched random-
ness in the DP Langevin equation(19)

�t \(x, t)=a\(x, t)& g\2(x, t)+D {\(x, t)+1 - \(x, t) !(x, t) (23)

where \(x, t) is the particle density and a represents the percolation prob-
ability. !(x, t) is a Gaussian white noise which represents the intrinsic
randomness of the DP process. At the critical dimension d=4, where fluc-
tuations start to contribute, the Langevin equation (22) is invariant under
scaling transformations x � bx, t � b2t, and \ � b&2\.

In order to include spatio-temporally quenched randomness, we allow
for small variations of a, i.e., we add the term

A\(x, t) '(x, t)

on the right hand side of Eq. (22). However, as can be shown by simple
dimensional analysis, this term is irrelevant in d=4 dimensions, i.e., it
decreases and eventually vanishes under scaling transformations. This
observation strongly supports the result that the DP transition in our
model is indeed not affected by quenched randomness.

We emphasize that the irrelevance of quenched randomness in our
model is due to the special role of ``time'' which coincides with the vertical
coordinate of the plane. That is, for each time step the stochastic processes
take place in a different random environment. To that extent the DD
experiment differs from other DP-related experiments such as catalytic
reactions where spatially quenched disorder affects the critical behavior.

The arguments given above assume that the quenched noise '(x, t)
does not involve long-range correlations due to a ``memory'' of rolling
grains. This is supported by recent studies of a single rolling grain on an
inclined rough plane.(20) By means of molecular dynamics simulations it
was shown that the motion of a rolling grain consists of many small bounces
on each grain of the supporting layer. Therefore, the rolling grain quickly
dissipates almost all of the energy gain from the previous step and thus
forgets its history very fast. For this reason it seems to be unlikely that
quenched disorder of the prepared layer involves long-range correlations.
However, this prediction should be verified experimentally.

VII. CONCLUSIONS

We introduced a simple model for flowing sand on an inclined plane.
The model is inspired by recent experiments and reproduces some of the
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observed features. In contrast to the experiment, which prepares itself in a
self-organized critical state, our model needs to be tuned to a critical point
by varying the energy barrier Eb . At criticality the system undergoes a non-
equilibrium phase transition from an inactive (dry) phase with finite
avalanches to an active (wet) phase where the mean size of avalanches
diverges. Analyzing the critical behavior near the transition, we obtained
the following results:

1. On short scales, i.e., on scales considered in the DD experiment,
the model reproduces the experimentally observed triangular compact
avalanches. In the active phase their opening angle % is predicted to vary
linearly with 2.. This prediction has to be compared with the model
proposed by Bouchaud and Cates(21) where % was found to vary as - 2..

2. On very large scales the critical behavior of the model crosses over
to ordinary DP. Thus, the DD experiment could serve as a first physical
realization of directed percolation. Crossover to DP is seen in the model
after about 104 time steps, whereas the DD experiment stops at about 3000
steps (i.e., rows of beads). Hence in order to observe the crossover in the
experiment, larger system sizes and�or smaller beads would be required.

3. We have shown that quenched randomness with short-range
correlations due to irregularities in the experiment should not affect the
asymptotic critical behavior.

4. The typical time needed to cross over to DP is found to decrease
with increasing dissipation.

Thus, in order to create experimental conditions favoring a crossover
to DP, we suggest to use small glass beads, large system sizes, and an
initial angle .0 where the dissipation of energy per toppling grain is maxi-
mal. For physical reasons we would expect the dissipation to be maximal
for small angles .0 , but this has to be verified in the actual experiment.

As a necessary precondition for a crossover to DP, compact clusters
must be able to split up into several branches, as illustrated in Fig. 11.
Thus, before measuring critical exponents, this feature has to be tested
experimentally. To this end the DD experiment should be performed
repeatedly at the critical tilt .=.0 . In most cases the avalanches will be
small and compact. However, large avalanches, reaching the bottom of the
plate, will sometimes be generated. If these avalanches are non-compact
(consisting of several branches) we expect the asymptotic critical behavior
to be described by DP. Only then it is worthwhile to optimize the experi-
mental setup and to measure the critical exponents quantitatively.8

8 Note added in proof: After submission of this article, DD observed splitting avalanches for
very high angles .0 . However, the branches do not propagate uniformly, i.e., they may have
different velocities.
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